Dual-emissive nanoarchitecture of lanthanide-complex-modified silica particles for in vivo ratiometric time-gated luminescence imaging of hypochlorous acid.

نویسندگان

  • Hua Ma
  • Bo Song
  • Yuanxiu Wang
  • Deyuan Cong
  • Yufei Jiang
  • Jingli Yuan
چکیده

We have developed a ratiometric time-gated luminescence sensory system for in vivo imaging of hypochlorous acid (HClO) by preparing a dual-emissive nanoarchitecture of europium- and terbium-complex-modified silica nanoparticles. The design of this nanoarchitecture is based on our new finding that the strong, long-lived luminescence of the β-diketonate-Eu3+ complex can be rapidly and selectively quenched by HClO. Therefore, the β-diketonate-Eu3+ complex was decorated on the surface of the silica nanoparticles for responding to HClO, while a HClO-insensitive luminescent terbium complex was immobilized in the inner solid core of the nanoparticles to serve as an internal standard. This nanosensing probe combines the advantages of both ratiometric and time-gated detection modes to afford high accuracy and sensitivity. Upon exposure to HClO, the nanoprobe displayed a remarkable luminescence color change from red to green, and the intensity ratio of the green over the red luminescence (I539/I607) showed a rapid, sensitive and selective response to HClO. Additionally, the feasibility of using the nanoprobe for intracellular detection of exogenous and endogenous HClO and for real-time mapping of HClO in small laboratory animals has been demonstrated via ratiometric time-gated luminescence imaging microscopy. The results reveal that the constructed nanoarchitecture cloud is a favorable and useful sensing probe for the real-time imaging of HClO in vivo with high specificity and contrast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-emissive nanoarchitecture of lanthanide-complex-modified silica particles for in vivo ratiometric time-gated luminescence imaging of hypochlorous acid† †Electronic supplementary information (ESI) available: Characterization of the new compounds, Fig. S1–S12 and a video showing the real-time uptake and accumulation of HClO in living Daphnia magna using the RTLNP as a probe. See DOI: 10.1039/c6sc02243j Click here for additional data file. Click here for additional data file.

We have developed a ratiometric time-gated luminescence sensory system for in vivo imaging of hypochlorous acid (HClO) by preparing a dual-emissive nanoarchitecture of europiumand terbiumcomplex-modified silica nanoparticles. The design of this nanoarchitecture is based on our new finding that the strong, long-lived luminescence of the b-diketonate–Eu complex can be rapidly and selectively quen...

متن کامل

Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging.

A kind of fluorescent/phosphorescent dual-emissive conjugated polyelectrolyte has been prepared by introducing phosphorescent platinum(ii) porphyrin (O2-sensitive) into a fluorene-based conjugated polyelectrolyte (O2-insensitive), which can form ultrasmall conjugated polymer dots (FP-Pdots) in the phosphate buffer solution (PBS) via self-assembly caused by their amphiphilic structures with hydr...

متن کامل

A Phosphorescent Iridium(III) Complex‐Modified Nanoprobe for Hypoxia Bioimaging Via Time‐Resolved Luminescence Microscopy

Oxygen plays a crucial role in many biological processes. Accurate monitoring of oxygen level is important for diagnosis and treatment of diseases. Autofluorescence is an unavoidable interference in luminescent bioimaging, so that an amount of research work has been devoted to reducing background autofluorescence. Herein, a phosphorescent iridium(III) complex-modified nanoprobe is developed, wh...

متن کامل

Dual-emissive Polymer Dots for Rapid Detection of Fluoride in Pure Water and Biological Systems with Improved Reliability and Accuracy.

It is of paramount importance to develop new probes that can selectively, sensitively, accurately and rapidly detect fluoride in aqueous media and biological systems, because F(-) is found to be closely related to many health and environmental concerns. Herein, a dual-emissive conjugated polyelectrolyte P1 containing phosphorescent iridium(III) complex was designed and synthesized, which can fo...

متن کامل

Evaluating the performance of time-gated live-cell microscopy with lanthanide probes.

Probes and biosensors that incorporate luminescent Tb(III) or Eu(III) complexes are promising for cellular imaging because time-gated microscopes can detect their long-lifetime (approximately milliseconds) emission without interference from short-lifetime (approximately nanoseconds) fluorescence background. Moreover, the discrete, narrow emission bands of Tb(III) complexes make them uniquely su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2017